Naval Research Laboratory

Washington, DC 20375-5320

NRL/MR/6793--95-7639

Theory of Competition between
Synchronous and Nonsynchronous Modes
in a Magnicon Output Cavity

ARNE W. FLIFLET
STevEN H. GoLD

Beam Physics Branch
Plasma Physics Division

March 16, 1995

19920313 018

Approved for public release; distribution unlimited.




REPORT DOCUMENTATION PAGE e 188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this
collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson
Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget. Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY (Leave Blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

March 16, 1995 Interim Report
4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

.. DE-AI02-94ER40861.A000
Theory of Competition between Synchronous and Nonsynchronous Modes

in a Magnicon Output Cavity

6. AUTHOR(S)

Amme W. Fliflet and Steven H. Gold

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
REPORT NUMBER

Naval Research Laboratory

Washington, DC 20375-5320 NRL/MR/6793--95-7639
9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESSI(ES) 10. SPONSORING/MONITORING
AGENCY REPORT NUMBER
Office of Naval Research Department of Energy
Arlington, VA Washington, DC

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION/AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Approved for public release; distribution unlimited.

13. ABSTRACT (Maximum 200 words)

In the magnicon amplifier, a scanning electron beam drives a synchronous fast-wave interaction in a gyrotron-like output
cavity. The output cavity is designed to support the synchronous TM,,, operating mode. However, a number of other TE or
TM modes can be excited in the cavity via a nonsynchronous, gyrotron-type interaction. To investigate the possibility of
competition from these nonsynchronous modes, a multimode gyrotron simulation theory and code have been adapted to the
magnicon configuration. The gyrotron theory and corresponding code have been generalized to include a synchronous TM mode
as well as nonsynchronous TE modes. Proper phase averaging between the modes, and between the modes and the beam
electrons, is critical to accurate mode competition calculations. In nonsynchronous interactions this is achieved by averaging
with respect to electron entrance time and the orbit guiding center angle. The synchronous mode interaction is invariant
with respect to these two averages; however, it is affected by scanning angle spread which is included via a third average
over scanning angles. Calculations have been carried out to model a second-harmonic X-Band magnicon experiment which is
currently underway at the Naval Research Laboratory (NRL). The output cavity has been optimized for the TM,;, mode at
11.4 GHz or twice the drive frequency (w; = 5.7 GHz). The principal competing mode is the TE,,; mode. The simulations
show that nonsynchronous mode interactions are suppressed by the synchronous interaction if the scanning angle spread is
sufficiently smali (<90° in the NRL configuration).

14. SUBJECT TERMS 15. NUMBER OF PAGES
Magnicon synchronous interaction Simulation Maser 22
Mutti-mode Gyrotron 16. PRICE CODE
17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT
OF REPORT OF THIS PAGE OF ABSTRACT
UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED UL
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)

Prescribed by ANSI Std 239-18
i 298-102




CONTENTS

. INTRODUCTION . .. ... . i 1
II. THEORY . ... . . . e 2
III. CALCULATIONS AND RESULTS ......................... 8
IV. DISCUSSION AND CONCLUSIONS . ........... .. ... ....... 11
V. ACKNOWLEDGMENT . ... ... ... ... .. .. 11
REFERENCES . ... . . e 12

Accesion For

NTIS CRA&I ;ﬁg
O
]

DTIC TAB
Unannounced
Justification

O SOOI

By
Distribution|

Availability Codes

] Avail and|or
Dist Special




THEORY OF COMPETITION BETWEEN SYNCHRONOUS AND
NONSYNCHRONOUS MODES IN A MAGNICON OUTPUT CAVITY

I Introduction

The magnicon is under development as an efficient, high-power microwave amplifier for
powering the next generation of electron accelerators for high energy physics research.!=1°
These accelerators are expected to operate at several times the frequencies currently in use,
i.e., X-Hand or above. This will require a significant advance in the performance of high
power amplifiers in this frequency regime. The magnicon is based on a scanning electron
beam that is obtained by passing a magnetized pencil beam from a Pierce-type electron
gun through a radio-frequency (RF) field deflection system. A schematic of the magnicon
is shown in Fig. 1. The deflection system consists of a series of cavities—the first one driven
externally—each of which support a rotating transverse magnetic (TM) waveguide mode,
namely, the TM;;0 mode, at ~ 1/2 the cyclotron frequency. The deflection system produces
a gyrating beam with high transverse momentum, i.e. o = v, /y > 1, where v, and yj
are the transverse and axial components of the electron beam velocity. The beam drives a
gyrotron-like interaction in the output cavity; however, unlike the conventional phase-mixed
gyrotron electron beam, at the cavity entry point the beam centroid rotates, or “scans”
about the cavity axis at the drive frequency wy. The output cavity is designed such that
the operating mode frequency w satisfies the synchronism condition w = Mwqg, where M
is the azimuthal index of the mode. In this case the electron beam entry point rotates
synchronously with the cavity RF fields, so that an ideal pencil beam interacts as a single
electron, resulting in a highly efficient interaction. The nonlinear efficiency of the magnicon
output cavity operating in the TMy;0 has been investigated by Hafizi et al.”!!. In this paper,
the possibility of mode competition in the magnicon output cavity, an important factor in
the operation of other gyro-devices, is investigated. In general, the overmoded output cavity
supports other transverse electric (TE) and TM modes, some of which will have frequencies
near the operating frequency. For these nonsynchronous modes, the beam entrance gyro-
phase is completely randomized and the beam drives a conventional gyrotron interaction.

Nevertheless, depending on the mode output coupling and transverse structure, these modes
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may have low threshold currents and thus represent potential competing modes. For a
nonideal magnicon beam, competition from nonsynchronous modes will be affected by
scanning angle spread, which degrades the the interaction with the synchronous mode. In
fact, when the scanning angle spread reaches 27 /M the magnicon interaction is identical
to the gyrotron interaction.

In this work, a time-dependent, multimode gyrotron theory and associated computer
code!?!3 have been modified to examine competition in the output cavity between the
phase-synchronous operating mode and the other nonsynchronous modes which interact
via the conventional gyrotron interaction. Calculations have been carried out to model a
second-harmonic X-Band magnicon experiment which is currently under way at the Naval
Research Laboratory (NRL). The output cavity has been optimized for the TMy;9 mode
at 11.4 GHz or twice the drive frequency (wq = 5.7 GHz). The principal competing mode
is the TE;5; mode. A nonlinear theory for these modes is developed in the next section.
Generalization to several modes is straight forward. The results of calculations are given

in Section III and our conclusions are given in Section IV.

II Theory

A time-dependent multimode theory of gyrotron oscillators has been developed in previ-
ous work.'!® A summary of the approach is given here with emphasis on the new features
in the analysis, including the synchronous interaction with a TM mode. Consider a cylin-
drical magnicon output cavity which is tuned for a synchronous interaction with a TM MN¢
mode at the angular frequency w. After passing through the deflection cavities, the beam
electrons follow helical trajectories with respect to guiding centers which are distributed
such that at the entrance to the output cavity, the beam position rotates or “scans” at the
drive frequency wq. The operating mode satisfies the synchronism condition w = Mwy. In
addition to the synchronous mode interaction, the beam interacts with a nonsynchronous
mode, which is assumed to be a TE,,,; mode, although in general there could be interac-

tions with more than one nonsynchronous TE or TM mode. The electron beam geometry
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1s shown in Fig. 2. The RF fields in the output cavity can be represented by the vector

potential:

— — -

A(7t) = Am (Fyw, t) + Ag (T, wg, t) (1)
where Ay, corresponds to the synchronous TM mode and is given by:

wCO

Amll(r,w,t) = Re{(w

) (19 (2) T3 (0 exp [ (w1 + & <t>>]} @)

- dg - " ’
Apm (Fyw,t) = —Re{fgam (1) Ei—]b(r, 0)exp [—i (wt + € (t))]} (3)
where w,, is the cutoff frequency of the TM sy, mode, b= — VI M is the transverse vector

mode function for a TM mode, YIM (r,0) = CTM In(kpnr)exp(iM8) is the cylindrical
waveguide scalar function, and an(t) and &y(t) are slowly varying amplitude and phase
factors which satisfy 0,/0t << wén,. The normalization coefficient of the scalar function
is: Cipy = 1/ (VmemnJy (2mn)), Ju is a Bessel function of the first kind, Ji, (z) =
dIp(z)/dz, and kyy = zamn/rw is the transverse wavenumber of the magnicon mode
where zp/n is the nth zero of Jps.1* The mode axial profile is given by the function ¢g. The

TE mode vector potential is purely transverse and is given by:

Aol t) = Re{mg (1) b (2) Emn exp [ (gt + &5 (t))]} (4)
g
where €,, = 2 x V,UTE is the waveguide transverse-mode vector function for a TE

mode, and h is the axial profile function. The TE mode scalar function is given by:
TE(r,0) = CIEJp(kmnr) exp(imb), the normalization coefficient is given by: CTIE =
1/ ( 7 (z2, —m?}], (x;,m)), wg is the frequency of the competing gyrotron mode, and

Emn = Tmn/Tw 1s the TE mode transverse wavenumber where z/ . is the nth zero of J/ .

The rf-field components are obtained from the vector potential using £ = —9A4/8¢ and
B = V x A. Rate equations for the slow-time-scale mode amplitudes and phases can
be derived by substituting the above expressions for the components of A into the wave

equation:

VA — = = pod (5)




where J is the electron beam alternating current (AC) current density, ¢ is the speed of
light, and po is the permeability of free space. SI units are used throughout except as

noted. The result is:

dayg, way Zoc

7 tig =~ me() (6)
ii(%& = —%Reg(t) (7)
dog s - ~Lmp () (8)
ﬁd%é _ —%Rep(t) (9)

where Zy = 377 ohms is the free-space impedance,

1 2m -
P(t) = - /0 d(wgt) /V da dz h(z)E, - Je'“sttts), (10)
g
and
7 1 27 .
Q) = 53, |, dler) [ da dz gl et (11)

The mode axial normalization integrals are given by:
L 2
W -—'/0 dz [h(z)[", (12)

and
L
W= [ dzlg(z)P". (13)
In this work, only the lowest order axial modes are considered. A sinusoidal profile will
be assumed for ~ and g is assumed to be constant, i.e., h(z) = sin(k,z) where k, = /L
and g = 1. These choices are appropriate for a closed cylindrical cavity. Performing the
integrals in Eqs.(12) and (13) lead to W, = L/2 and Wy, = L.

The value of the mode excitation functions P and Q at the time ¢ depends on the
motion of electrons which entered the cavity between the times ¢ and ¢ — L/v,. Thus
the mode rate equations are nonlocal integro-differential equations. To calculate the AC
current density, the interaction with the electron beam is treated in the single-particle

approximation. The general time-dependent problem can be simplified by using the fact
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that the characteristic rise-time of fields in the resonator is much longer than the electron
transit time in the cavity as well as the wave period. In this case, one can use a quasi-
steady-state approximation in which the electron trajectories are calculated for rf modes
with fixed amplitude. Neglecting space-charge effects and guiding center drifts, the slow-
time-scale nonlinear equations-of-motion for an electron with guiding center coordinates
(Ro, ©¢) immersed in an axial magnetic field By and interacting at a particular harmonic

with a synchronous TM mode and a nonsynchronous TE mode are readily deduced from

previous steady-state, single-mode analyses,!*1%1¢ and are given by:
du g 8 - ldg u, .
= ——Jm7 Js k R _—— _ A n
dz uzf EAINTL ( MNTL) e{( PE 1—g exp[ z( + £ )] ’

—%ngls(l_cmnFL)Re{( ' ;exp A+~g)]} (14)

T o= D (1) - T () e (1 i) exp =i (4 + &)}

dz u)) wy U, Uy wdz
2 .2

s (kmnT
+22 5 _( _ L)Re{z’ (h+i U dh_ Wgeol h) exp[——i(A—{-Eg)]} (15)

Uy "8 kpnTL yog dz  sQwgy

du, up [ yw? sJo (kanie) |
= —_— [ofe] _ SR Sl B A .
dz z (s’yowﬂ 1) f Ay Re {igexp [—i (A + &)}
+_u_ff J </_c FL) Re zd_h exp [—i (A + Z,)] 16)
UL g%s mn 73 .
where u; = yv,/c is the normalized transverse momentum amplitude, u, = yv,/c is the

normalized axial momentum (v, and v, denote the electron transverse and axial velocities,
respectively),

A(z) = (w—35Q) z/v, — s¢ + wipg — (M — 8) Qg (17)
gives the slow variation in the transverse momentum phase relative to the reference wave

phase, and
:g:§g+(wg—w)z/v”+(wg—w)t0—(m—M)@o. (18)

Other variables denote: s, the harmonic number, v (7o), the (initial) relativistic mass ratio




which is given by:
1/2
7:(1+uf+u§) , (19)
7L, the Larmor radius of the orbit, Q, the relativistic cyclotron frequency of the unperturbed

beam, and fp, and f,, the normalized TM and TE mode amplitudes given by:

l¢]

fo = —aunCipnIn—s (kanRo) am(to) (20)
mgcC
lel '

fe = mencgng“S(kmnRo)ag(to) (21)

Quantities with an overbar have been normalized according to: z = z/ry, 7y, = rp/r,, Q =
Qry /e, ©=wry/c, and kpyp = kmnrw. Ro and O, denote the electron orbit guiding center
radius and azimuthal angle, |e| is the electron charge, my is the electron rest mass, r, is an
arbitrary normalization radius, and ¢ gives the slow variation in the transverse momentum
phase relative to the cyclotron motion. At the cavity entrance, the transverse momentum

phase parameter is given by
A(0) = —sdo + wio — (M — 5) O, (22)

where ¢o = #(z = 0) is the electron gyrophase at the cavity entrance. For a magnicon

scanning electron beam,

¢O = 05c+cl (23)
@0 = 05c+c27 (24)

where ¢; and ¢, are constants and the scanning angle is given by:
gsc = wqtp + escO- (25)

The angle 6,.q accounts for the spread in scanning angles resulting from a nonideal beam
formation system. Substituting Egs. (23) and (24) into Eq. (22) and using Eq. (25) leads
to:

A (0) = Ao - Mgsc() (26)

where Ag is an overall phase constant, which may set to zero without loss of generality.
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The AC current density is obtained by integrating Eqs.(14)—(16) for an appropriate set

of initial conditions at the cavity input z = 0. The AC current density is given by:

.
J=-27. (27)

vZ
Using the prescription developed in previous work,'® Eqs.(8) and (9) for the mode amplitude

and phase can be rewritten as:

%f; _ anm A / dzg(z <Js(kM§rL)§fsin A+ 5‘“]>esco,eo,to (28)
iidéTm — _.__/ dz g(z < kman)Z—z cos [A+§m]>6meo,t0 : (29)
‘é_ff - "%2& n; / dzh(z <J (kman)z—zcos A+ “g]>asco,eo,to (30)
%% = / dz h(z < kman)Z—z sin [A + ug]>9560’®0¢0 (31)

where 7 = wt; ( )g,.,00, denotes the average with respect to the initial scanning angles,
guiding center angles, and cavity entrance times of the electrons; and L is the normalized

interaction length. The normalized current factors are given by:

= lelZo J3s_(kmnRo)
= moc2w7rJ'2(mMN)W lo (32)

|e|Z0 J2 (kmnRO)
moc?w m (1 — m?/z1,2) J2 (!, )W,

Iy

Io (33)

where Ij is the DC beam current. The numerical calculations can be greatly simplified for
low-order harmonic interactions by noting that the Bessel functions J; and J, which occur
in the equations-of-motion and the rate equations for the mode amplitude and phase source
terms can be replaced by their small argument expansions with little loss of accuracy.
The time-dependent simulation is initiated by assigning a small initial amplitude and ar-
bitrary phase to a set of modes which may participate in the interaction. The corresponding
induced AC current density is obtained by integrating the equations-of-motion [Eqs.(14)-

(16)], and is used to construct the source terms in Eqgs.(28)-(31). Eqgs.(28)-(31) can then
7




be integrated a single time step and the process repeated. The initial conditions for the
equations-of-motion for the magnicon scanning electron beam are: u,(0) = uy,, u.(0) = Uzg s
a fixed guiding-center radius Ry, ¢ is uniformly distributed in the interval [0,27], to is
averaged over the longest beat-wave period of the modes present in the cavity, and a certain

spread in angles is assumed for 6,c. The interaction efficiency is given by:

— Yo — (7 (Z = L))0550y®01t0

: 34
! Yo—1" (34)
The output power in a TM mode is given by:
mm2ct JH(zmn) -
Pu(r) = =2 M oW | fa(7))? .
m(T) 270e? QmJ?\/j_s(kMNRO)w | fm(7)] - (35)
and the power in 2 TE mode is given by:
mmict (1 —m?/2! 2)J2 (2! ) _ 2
P — 0 mn/ “m\**mn/ -
g(T) 22062 Qngn—s(kmnRO) ngg |fg(7-), (36)

IIT Calculations and Results

The magnicon parameters were obtained in a previous optimization study carried out
for the NRL experimental configuration.” The electron beam energy and current are 500 kV
and 172 A. The beam pitch ratio after transiting the deflection cavities is @ = 1.0. An
ideal cylindrical output cavity is assumed with a radius of 2.145 cm and a length of 5 cm.
The effect of the beam tunnel apertures is neglected. The TMy0 operating mode Bessel
function zero z5; = 5.135 and the cold-cavity oscillation frequency is 11.42 GHz. For
simplicity in legislating the synchronism condition, frequency shifts due to beam loading (~
1 MHz) have been neglected in the mode rate equation source terms and in the equations-
of-motion. This allows the drive frequency to be set equal to the cold-cavity frequency.
The mode phase time dependence resulting from these shifts has been calculated. Possible
near-cutoff, nonsynchronous competing modes include the TMgy mode (zg, = 5.520 and

f =12.27 GHz), the TE4;; mode (z}; = 5.320 and f = 12.20 GHz), and the TE;5; mode
8




(2 = 5.33 and f = 12.23 GHz). Of these, the most dangerous competing mode is the
TE;21 mode because its fields are peaked on axis and therefore couple strongly to the
beam which propagates near the axis. In the slow-time-scale approximation, the coupling
strength of the TMj;0 operating mode is proportional to J2(2.39R,) whereas that of the
TE121 mode is proportional to J2(2.49R;). Thus the relative coupling strength of these
modes is strongly affected by the electron beam guiding center radius, l.e., near the axis
an increase in beam radius increases the coupling to the TM,;0 mode while decreasing the
coupling to the TE;5; mode. In this study a guiding center radius Ry = 0.45 cm was chosen.
This value optimizes the efficiency of the TM,;0 mode in the slow-time-scale approximation
for the chosen cavity and beam parameters, and is consistent with simulation results for
the size of the NRL electron beam after passing through the deflection cavities. The
oscillation threshold currents of the TE,5; and TM,y;, modes were calculated numerically
by integrating the equations-of-motion in the small signal regime and are shown in F ig. 3
as a function of the applied magnetic field for a Q-factor of 200. The threshold current of
TEi21 mode is about half the operating current so that high power oscillation is expected
unless it is suppressed by the synchronous mode. Conversely, the threshold current of the
TMz10 mode for a phase-mixed beam is greater than the beam current, as shown in Fig. 3.

Competition between the synchronous TMy;, mode and the nonsynchronous TE,9; was
investigated using the formalism presented in the preceding section. The numerical integra-
tions were carried out using a fourth-order Runga-Kutta algorithm for both the field rate
equations and the equations of motion.!” Twelve phases were used in each of the averages
over Og, O, and ty. Fifty points were used in the equation-of-motion integrations through
the cavity. The results were found to be insensitive to increasing the number of points used
in these averages and integrations.

The time evolution of the output power in the TMy,o synchronous mode and the TE;9;
gyrotron mode is shown in Fig. 4 for scanning angle spreads of 45° and 90°. A uniform (top
hat) distribution of particles was used to model the spread. A 20 ns voltage ramp, in which

the initial voltage was 0.8 of the maximum, was used to model effects of a finite voltage




risetime, however, the results were not affected by this ramp. This is in contrast to the case
of mode competition in gyrotron oscillators where a voltage ramp can affect the multimode
equilibrium state by varying the mode detunings during start-up.!® In the present case
the voltage ramp increased the initial growth rate of the TE121 mode but had little effect
on the much faster growth rate of the TMjz10 synchronous mode. The maximum beam
current and beam velocity pitch ratio were used from the beginning of the simulations.
For both values of scanning angle spread, the nonsynchronous mode is suppressed by the
magnicon interaction, but the suppression is weaker for the larger scanning-angle spread.
Our calculations indicate that there are two basic effects of increasing scanning angle spead.
The first is a reduction in the operating mode efficiency and the second is a weakening in
the ability of the synchronous mode to suppress the nonsynchronous competing mode.
Both these effects are illustrated in Fig. 4. At a particular spread value, which depends on
the beam size, the latter is no longer completely suppressed and a multimode equilibrium
results. Such a case is shown in F ig. 5. This figure shows the time evolution of the TMa;0
mode normalized axial electric field and the TE;2; mode normalized transverse electric
field for a large scanning-angle spread of 122°. The voltage profile is also shown. In
this case the TE mode is not suppressed, but has a reduced growth rate. It eventually
grows to large amplitude and partially suppresses the TM,;, mode forming a multimode
equilibrium. Fig. 6 summarizes the efficiency dependence on scanning angle spread for
an o = 1, o = 0.45 cm beam. The efficiency is reduced by ~ 15% for a scanning-angle
spread of 45°; the reduction increases to 50% for a scanning-angle spread of 90°. The TE;,;
mode is completely suppressed for scanning angles up to 90°. The relative magnitude of
the TE;5; mode grows rapidly as the scanning-angle spread is increased beyond 90°. The
magnicon mode disappears completely for a spread of 180° and the TE;2; mode reaches an

efficiency of ~ 16%.
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IV  Discussion and Conclusions

A fully nonlinear, time-dependent, multimode theory has been formulated for the mag-
nicon output cavity. Proper phase averaging between the modes, and between the modes
and the beam electrons, is critical to accurate mode competition calculations. In nonsyn-
chronous interactions this is achieved by averaging with respect to electron entrance time
and the orbit guiding center angle. The synchronous mode interaction is invariant with
respect to these two averages; however, it is affected by scanning angle spread which is
included via a third average over scanning angles. Calculations have been carried out to
model a second-harmonic X-Band magnicon experiment which is currently. underway at
NRL. The calculations, although lengthy, can be feasibly carried out on a fast computer
such as the Cray. The output cavity has been optimized for the TM,;0 mode at 11.4 GHz
or twice the drive frequency (wq = 5.7 GHz). The principal competing mode in this config-
uration is the TE;2; mode. Nonsynchronous mode interactions are found to be suppressed
by the synchronous interaction if the scanning angle spread is sufficiently small (< 90° in
the NRL configuration). Simulations of beam propagation in the deflection cavities suggest
that the scanning angle spread at the output cavity in the NRL experiment will be less

than this, so that mode competition in the output cavity is not expected to be a problem.
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Fig. 4. Time evolution of the output power in the TM,;, and TM,,; modes.
Solid curves: 6, = 45°, dashed curves: 6,4 = 90°.
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Fig. 5. Time evolution of the normalized mode amplitudes (fm and f) for 6,5 = 122°.
Solid curve: TM,,o mode, dashed curve: TE,,; mode, dotted curve: voltage profile.
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Fig. 6. Output efficiency for each mode as a function of scanning-angle spread.
Solid curve: TM,,o mode, dashed curve: TE;,, mode.




